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The problem of maximizing the probability of a controlled system attain- 
ing the specified state is considered, The related Bellman equations and 

the methods for determining the optimal control are investigated. Exam- 
ples are presented. 

1. The following controlled system is given: 

X* (t) = f (X (t)) + &J (X (0) + o (X (QY(& 1>, 0 IL. L> 
where X is the phase coordinate vector from a Euclidean space E,,B is a constant 
matrix the function f and the matrix CT satisfy the requirement 

1 f (4 - f (qJ I + I iJ b4 - (3 &J t < c I 21 - 52 1 (1.9 

for some constant c > 0 and for any X1, X2 E E, ; finally, E (1) is a standard 
Wiener process and the control IC (5) CZ E,,llrhere 

U(X):)E u (1.3) 

for a given bounded convex set U . We note that a strong solution of Eq. (1.1) exists 
[I] when conditions (I, 2) are satisfied and U G 0 . Let there be a banded target set 

Q c E, with a boundry &. We denote the complement of Q U QI in E, by Q2. 
Further, let r~ (n) denote the instant that the system (1.1) first attains QI under con- 
trol u and initial condition X (0) = x E Qz. In this connection TX (24) is assumed 

to equal infinity for those realizations of process (1.1) which do not attain Qr in any 

finite time. A certain control from (1.3) is said to be admissible if for this control 

and for the initial conditionr (0) E i& a solution of Eq. (1.1) exists. Ey P ( *) we 

denote the probability of the event within the parentheses. 
Problem, Among the admissible controls choose the one which maximizes the 

probability P (T% (u) C DO), x E Qa, i.e. , maximizes the probability of attaining 

the target set Q in finite time, when starting from 4%’ 
With the problem posed we connect the following b~n&~alue problem for the 

Bellman equation: 

max,EuLuTl (X) = 0, x cz Q2 

here the prime is the sign for the transpose, the vector 8 I dX and the matrix 8’ / dX” 

have, respectively, the componentsd f dXi and d2 / ilx$xgr i, 1-c 1, . . n, the symbol 
Tr denotes the trace of the matrix, In the usual manner [2] we can establish that if 

the function 

730 
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maxwEC P 6, (4 < ml, 2 E QS 
(1.5) 

is sufficiently smooth in 2 , it satisfies (1.4). However, even then the relations 
(1.4), in general, do not determine the function (1.5) because of the possible non- 
uniqueness of the solution of the exteriorboundaryvalue problem (1.4). In addition, 
the usual procedure for computing the optimal control, consisting in solving the Bell- 

man equation and subsequently determining the optimal control from it, is also not 

always realizable in the problem posed because, for example, the situation when the 

function (1.5) identically equals unity is possible. In Sects. 2 and 3 we shall given 
certain answers to the questions raised, while in Sect. 4 we give examples. We note 
that other problems with a probabilistic criterion were investigated in [3,4]. To be 
precise, the problem of maximizing the probability of the system staying outside a 
prescribed region was considered in [3] and the problem of maximizing the probability 
of staying within a region during a specified finite time interval was considered in [4], 

2. In what follows we assume that the matrix o (a$ is uniformly nonsingular with 
respect to x E Q2 and that Q1 is a Liapunov type boundary [5]. Let RN cz E,, 
be a sequence of spheres of radius N with boundaries r.1’7 where 

the sequence of functions $‘N (5) 
Q c RN, and let 

be defined by the relations 

maxUEr&,V,v (5) = 0, x EE Qz fl RN 

VN (x) = 1, x E Q1, Vav (2) = 0, II: E r.Y (2.1) 

On the basis of [6] the solution ofboundaryvalue problem (2.1) exists and, moreover, 
is unique, while bv virtue of the maximum principle 

~>~.;N,(~)>J’N,(~)>@, ~EEQ~~RN~~ Nt>Nl (2.2) 
for elliptic equation [7]. 

Theorem 1. Let the assumptions made regarding the coefficients of system (1.1) 
and the region Q be satisfied, Then V, (5) converges uniformly to r/‘, (X) as 
N + 00 on any bounded set of variation of argument c, while the limit, T/‘, (5) is the 
minimal positive solution of problem (1.4). 

Proof, Let there be given some bounded region Qs C E, with a Liapunov type 
boundary. From the theorem’s hypotheses, estimate (2.2) and [6] it follows that 

Similarly, from (2.21, 12.3). Il. 21 and r61 

(2.3) 

(2.4) 

In relations f2.3), (2.4) and below ci denote certain nonnegative constants. From 
(2.3), (2.4) and [8] follows the compactness of the sequence (v~(t), ovN(X) / ax) 
in the space of continuous functions for 2 E Q3 n Qz- We choose some convergent 

subsequence of the sequence (~VN (x) I dx, TTY (5)) and we denote the corresponding 
limit by (av, (3) / &, V, (x)) , Ekxause of the arbitrariness of Qs the function 
vo (.2r) is a solution of bounda~-value problem (1.4) (see [?I ). Hence, from (2.2) 
and (2.3) it follows that the sequence V,v(s)’ itself converges uniformly, not decreas- 
ing to Trs (X). 

We now assume that Vs (5) is not a minimal positive solution of problem (1,4). 
Then a solution v (z) of this problem exists such that 
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0 < v (5) 5,; v, (x) (2.5) 
Thus, in particular, the formulas V (X) == V.v (5) = 1, ZJ E Qz 

v (x) z V/IN (x) = 0, 5 E f.v 
are valid. Hence from the maximum principle for elliptic equations (see [‘7] ) there 
follows the estimate 

v.v fx) Q v (5), x‘EQ2 I-l R?J (2.6) 

From this estimate, the convergence of V.v (2) to V, (z) and (2.5) we conclude 
that V (5) = V, (x).Theocem 1 is proved. 

Note. For the case of an uncontrolled Wiener process (i, e. , when in (1.1) the co- 

efficients f = 0 and B r fl and o is that unit matrix) Theorem 1 turns into an 
assertion established earlier in [9]. 

In accordance with [lo) a measurable function ZL.~ (SF realizing the maximum in 

(2.1) exists, We introduce the sequence of controls ?V (x) equal to UN (x) when 

x E Q2 n RN and equal to an arbitrary fixed constant from TJ for the remaining 
values of 2. 

Theorem 2. Under the hypotheses of Theorem 1 the quantity 

J (5, n) =; p (TX (4 < =)I < v, (4 (2.7) 

for any admissible control u _ Further, if the controls u.v (5) are admissible, then 
as N--+oo 

J (5, w) -+ V, (4 (2.8) 

where the convergence is uniform on any bounded set of variation of J: 

Proof. Assume that 

J (~7 4 > V, 14 (2.9) 

for some admissible control U. bet .Z (& u)den&ea solution of (1.1) under control u 

and let ‘r,“I (U) be the instant of first exit of process 5 (TV U) from Qz i? RN 

under the initial condition z (0, U) -= r E Qz f-l R,va 

the hypotheses of Theorem 2 
N&-V (u) < M 

On the basis of [ll] and of 

From here it follows that (see [lZ] ) 

Hence with due regard to the boundary condition for VN, we have that 
P (X (rlV (u), u) E 9,) < vv (4 (2. IO) 

for any L%‘, The left-hand side of this inequalitytends toJ (E, r.~.)as & --+ CU. 
Therefore, in view of (2,5), (2.6), (2.10) and Theorem 1 we conclude that 

J (X, u) --( vcl (4 which contradicts(2.9). By the same token relation (2.7) has 
been established. 

To prove (2.8) we note that when x E Qz n R,v the function J (J* U.V) satis- 
fies the boundary-value problem 
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Hence, from (2. l), (2.7) and the maximum principle [7] it follows that 

T/V (x) < J (.t., w) < T/o (4 
The validity of the uniform convergance in (2.8) is also confirmed by Theorem 1. 
Theorem 2 has been proved, It shows that if the control V,V (z) is used in system 

(1. l), the functional (1.5) can be made to approximate the optimal value V,, (x) as 
closely as required if fl is sufficiently large, 

N o t e . We note that the method used in the proof of Theorems 1 and 2, consisting 
of constructing a sequence V, (2) and passing to the limit asN - 00, can also serve 

for a practical computation of the minimal positive solution of the Bellman equation 
(see Example 1). 

3. Let us consider certain properties of function v,-, (X). As we have already noted, 
if T/-,, (5) = 1, then (1.4) does not define the optimal control. By analogy with [13] 

a sufficient condition for the identity v,, (x) G 1 is the existance of a unique solu- 

tion of boundary-value problem (1.4) in the class of bounded functions, since a bounded 

function T/‘,, (5) satisfies (1.4) in view of Theorem 1, while the function v (2) = 1 
also is a solution of (1.4). Another sufficient condition for the identity V,, (CC) 3 lis 

the existance, for some admissible control u of a nonnegative function W (5) such 

that L, W (x) < - c for some constant c > 0. This last condition follows from 

u41. 
We cite another case when v, (x) does not define the optimal control, We assume 

that for some N > 0 
mm V,(.x)>O 

x. \Xj>~N (3.1) 
Without loss of generality we can assume 

VII(~)<17 J:EQ’? (3.2) 

because otherwise v, (2) = 1 on the basis of the maximum principle for elliptic 
equations; this situation has already been considered above. Let ug be any admis- 

sible control maximizing the expression L, V, (z). We show that it is not o$mal. 

We have (see [9] ) 

MV, (J (rxN (uo), uo)) - T/o (x) = 0 (3.3) 

The probability p (%,N (uo) < CXJ) = 1 for any N; therefore, with due regard to 
inequality (3.2) and the results in Sect. 2 we obtain 

p (z (axN (uo), uo) E rN) > c3 > 0 

Hence from (3.1) and (3.3) follows the estimate for some 6 > 0 

P (5 (T,~ (uo), ~0) E QI) <.Vo (4 - 6 

then, passing to the limit as N -+ oo we conclude that 

J (G 4 = p (J: (G (uo), 4 E QA -K Vo (4 (3.4) 

If now the controls UN are admissible, then in view of (2.8) relation (3.4) shows 
that the control ZL,, is not optimal. In the contrary case, to prove the above we 
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proceed as follows. We fix an arbitrary point zo E Qz and a number e>O 
for which 

J (I,,, uo) = V, (x0) - E 
(3.5) 

Using Thebrem 1, we take N such that 

V@ (50) - VN (x0) < E / 4 (3.6) 

Further, from the proof of Lemmas 2.1 and 2.2 from [2] follows the existence of an 
admissible control v such that 

for any ei > 0 

We now apply Dynkin’s formula [9] to function VN (z) and to process 2 (t, 2’). 
We have 

Hence it follows that 

(3.8) 

But in view of the nonsingularity of matrix o (x) and of the boundedness of set u , 
the quantity of MrXON (u) is uniformly bounded with respect to VEU for any 
admissible control v from (1.3). Therefore, we can choose E1 such that 

p (r (r/ (v), Q) E Q1) > V/TN (q,) - E / 4 

If we now construct control Va -according to Theorem 2, i.e. , set VO (z) = V (z), 
XEQ~ 0 RN , and take VO (x) to be a constant from U for the remaining values of 
x then 

J (~0, 2’o) > VN (X0) - E / 4 

Hence from(3.5), (2. 2) and Theorem 2.1 follows the estimate 

J (xot ug) > vo (X0) - E / 2 
From this estimate and (3.5) follows that the control u. (2) under condition (3.1) is 
not optimal. Let us consider the case when 

limk+, v, (2:) = 0 
(3.9) 

We show that when equaiity (3. 9) is satisfied, any admissible control UO maximizing 
the expression L,V, is optimal. For this we make use of formula (3.3) and we 
present the first term in the form 
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MVO (t (TcN (u,),u,)) = p (x (QN(Uo)7 uo) E Qd + 
M,l/‘, (z (%cN (uo)7uo)) (3.10) 

where the symbol M, implies that the mean is computed over trajectories for which 

5 (TX” (Us), Us) E TN. In (3.10) we pass to the limit as N -+ co. With due 
regard to (3.3), (3.9) and (3.10) we obtain J (cc, uo) = v. (z). By the same token 
we have established the optimality of control us on the basis of Theorem 2. 

We show that a sufficient condition for (3.9) is the existence of a positive continuous 
function W (X) for which 

maxUSr:LzrT/TI (z) < 0, 5 E Qs, lirnl,p,W (2) = 0 (3.11) 

As in the derivation of formulas (3.7) and (3.8), for any F > 0 we can find an 
admissible control u such that for a given N 

P (X (TX,’ (U), 2’) E Q1 > VN (50) - & (3.12) 

where x,, is an arbitrary fixed point from Qz n Rp. Further, by replacing the fun- 
ction trN in (3. 7) by W, with due regard to (3.11) we have 

Hence, from the positiveness of w and from (3.10) it follows that 

(3.13) 

Because the point r. and the number E are arbitrary, estimates (3.12) and (3.13) im - 

ply that c4w (x) > l'rv (x)- Hence c,W (z) > v, (2). Equation (3. 9) fol- 

lows from the latter inequality and (3.11). 

Note. The question of the optimality of the control u. (2) maximizing the 

quantity J&L VO (2) reduces to the question of the existence of a solution of system 

(1.1) with u = u. (x) . In the general case control no (2) will be only a measur- 
able function [lo], which is insufficient for the existance of a solution of system (1.1) 
in the strong sense. Therefore, in that situation it is necessary to extend the concept 

of a solution, understanding it in the weak sense [l] or to impose further constraints on 
the parameters of the problem, sufficient for a solution in the strong sense to exist when 
fL = ug (Z) . Under the assumption of Sect. 2 we formulate certain sufficient con- 

ditions for the existence of a solution in the weak and strong sense mentioned when 
u. = 110 (2) : 

1) let matrix o in (1.1) be constant. Then (see (l], p. 143) a weak solution of 

system (1.1) exists when u = uo @), 
2) let constraint (1.2) have the form )( u )I 6. C, c > 0; then u. (r)is continuous in 

x and, consequently, system (1.1) has a strong solution when u= u,, (x) (see Cl1 1. 
We note further that when investigating actual controlled systems, at first we can 
formally determine a function u. (x) maximizing L,V, and next prove the 

optimality of ~0 (2) by using any of the requirements sufficient for the existence of 

a solution of system (1.1) when u = u. (x) (see Example 1). 
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4. Example 1. We consider the motion of a rigid body relative to its centre 

of mass, assuming that equations of motion (the Euler equations) are 

z2xa (/I* - n3) (azaJ1 + 111 -1 oE1’ (1 2 3) 

z/*2 + u#z < b, o>o 

Here the .ri are the projections of the vector of the body’s moment of momentum re- 
lative to the centre of the mass onto the principal central inertial axes, ai are the 
principal central inertial moments, the number o > 0, the symbol ( 1 2 Y) denotes 

- that the equations for x2 and z3 are obtained from (4, I) by a cyclic prmutation of 
the indices. Let Q- be a sphere of given radius r. In this case the Bellman Eq. 
(1.4) does not have a unique solution. In fact, with due regard to (4.1) any function 

is a solution of (1.4) for any arbitrary constant c > 0 

Using Theorem 2 we get that the optimal control in this problem is!,,, = - cr 1 L I-1 z, 
where (‘1 is an arbitrary number from [O, bl, while the probability of attaining Q 

corresponding to this control, equals unity. To prove the existance of a solution of 
Eq. (4.1) it is sufficient [14] to find the Liapunov function IV)/0 for which L,,“FV d c,IV 
for some constant c1 . In the present example we can take the function 

as the Liapunov function and with its help be convinced of the existence of a solution 
of (4.1) up to the instant of atiining Q, because LuOW (x) == --I, 1 .c ) > r. When 
investigating certain actual systems we can relax the requirement on the nonsingularity 

of the diffusion matrix o. . We present an appropriate example. 

Example 2. We study the precessional motion of a planar gyroscolic pendulum 

t-151. Let the controlling moment be applied around the gyroscope’s housing axis, x1 
be the pendulum’s rotation angle around its axis, and ~2 be the housing’s rotation 

angle. Under certain assumptions the equations of motion are [16] 

Xl’ = n1.r2 + u, ) 11 ) < 1. t >, 0, x2 I_ . -(tzxl - 03x2 i- OE 

Here oi > 0 and u > 0 are constants whose mechanical meanings have been pre- 

sented, for instance, in [16]. We pose the problem of bringing (4.2) into the sphere 
Q -x,+x.$<r2. 

Let us show that for this problem the optimal control is 

140 (x) L - ?@I x1 

while the probability of attaining under this control equals unity. By N we 
denote a number for which o2 < 2 ( x1 ) a2 i- %fll%2 follows from the inequality 
xl2 + x22 > N while by Q3 we denote the set 

Q3 m= QU (xl, x2 : 1x2 1 B ~7 (~1 1 < W, U < e < miu (f, ,1 / (Bar)) 

We assume 
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a2 

i 

a2 ) 
-m 

0(5)=,112$.r22-. -_i~f222 
al, al 

In view of (4.2) and (4.3) we conclude that we can so choose the constants z 5 0 
and tn > 0 that 

where c>o is some constant and 0, is the complement of Q3 with respect to 
XG.2 From (4.4) and [14] it follows that V3 is attained with probability one for any 

of the s indicated above. 

Now let z = (pi, r2) be an arbitrary point 4s \ 0. We show that the po- 

bability of attaining 0 when starting from I equals unity. For definiteness let 

9 < o. Then uO==l up to the instant r,, at which the trajectory xi (t) 

reaches zero, and, therefore, on the basis of (4.2) 

(4.5) 

From this and [17] follows the absolute continuity of the measure of process 4 re- 
lative to the Wiener process. Therefore, the probability of process ~2 (t) re main- 

ing in the region ( z2 1 < 1 / (2al) in the interval 0 < t < 2N is positive. Hence, 

with due regard to (4.2) process x2 originating at x E Qs \ V is able to reach the 

sphere Q with positive probability within the time 0 & t < 2N . Moreover, in 

view of (4.5), process r2 (t) is continuous in accordance with the intitial condition 

for I up to the instant miu (r,, 2N). Consequently, we finally conclude that the 
upper bound of the probability of reaching the surface of a sphere of radius N+a 
before reaching v, when starting from v3 is less than unity. This (see [14] )proves 

the validity of statements in the example. 
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